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Abstract Homology modeling is a powerful tool for

predicting protein structures, whose success depends on

obtaining a reasonable alignment between a given struc-

tural template and the protein sequence being analyzed. In

order to leverage greater predictive power for proteins with

few structural templates, we have developed a method to

rank homology models based upon their compliance to

secondary structure derived from experimental solid-state

NMR (SSNMR) data. Such data is obtainable in a rapid

manner by simple SSNMR experiments (e.g., 13C–13C 2D

correlation spectra). To test our homology model scoring

procedure for various amino acid labeling schemes, we

generated a library of 7,474 homology models for 22

protein targets culled from the TALOS?/SPARTA?

training set of protein structures. Using subsets of amino

acids that are plausibly assigned by SSNMR, we discov-

ered that pairs of the residues Val, Ile, Thr, Ala and Leu

(VITAL) emulate an ideal dataset where all residues are

site specifically assigned. Scoring the models with a pre-

dicted VITAL site-specific dataset and calculating sec-

ondary structure with the Chemical Shift Index resulted in

a Pearson correlation coefficient (-0.75) commensurate to

the control (-0.77), where secondary structure was scored

site specifically for all amino acids (ALL 20) using

STRIDE. This method promises to accelerate structure

procurement by SSNMR for proteins with unknown folds

through guiding the selection of remotely homologous

protein templates and assessing model quality.

Keywords Protein structure prediction �
Homology modeling � Solid-state NMR spectroscopy �
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Introduction

Structures of membrane proteins and biomolecular

assemblies are difficult to obtain due to the inherent limi-

tations of X-ray crystallography and NMR in studying such

proteins in their native environments. Although tremen-

dous progress has been made in these fields in recent years

(Forrest et al. 2006; Hanson and Stevens 2009; Hiller

et al. 2008; Mobarec et al. 2009; Van Horn et al. 2009;

Yarnitzky et al. 2010), structural studies of membrane

proteins are few in comparison to the number of soluble
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proteins and complexes deposited in the Protein Data Bank

(White 2009). Hybrid approaches that draw on the

strengths of individual methods have recently demon-

strated capacity to accelerate structure determination and/

or enhance the resolution of protein structures. For exam-

ple, solution NMR data have been interpreted in conjunc-

tion with small angle X-ray scattering, ab initio structure

prediction, or homology modeling to determine structures

of proteins and protein complexes (Alber et al. 2008).

Similar strategies have been successful in elucidating

structures of the homodimer Dsy0195 using solution NMR

with EPR (Yang et al. 2010), a 82 kDa protein using SAXS

and solution NMR data (Grishaev et al. 2008), P450s and

other proteins using sequence-function relationships with

structure predictions (Baudry et al. 2006, Mercier et al.

2006), zinc-bound proteins using solution NMR and

homology modeling (Randazzo et al. 2001), and protein

complexes including hemoglobin using X-ray crystallogra-

phy with structure predictions (Schröder et al. 2010).

Methodologies that complement solid-state NMR (SSNMR)

data with X-ray crystallography (Tang et al. 2011) or

SAXS (Jehle et al. 2010) have also been developed. Such

hybrid methodologies enable site-specific restraints to

narrow the range of candidate structures. Methods pairing

SSNMR with structure prediction have potential as an

efficient way to provide rudimentary structures, which can

in turn expedite protein assignment by providing initial

chemical shift values for auto-assignment algorithms

(Monleon et al. 2002; Tycko and Hu 2010), extract greater

structural information from poorly diffracting crystals and

seed NMR calculations to access higher quality structures

as experimental observations accumulate (Schröder et al.

2010). The process of identifying initial structural models

is often the most time-consuming step in the NMR struc-

ture determination process; once available, a variety of

methods are available for structure refinement, both in

solution (Bax et al. 2001; Fischer et al. 1999) and in solid

state (Franks et al. 2008; Wylie et al. 2009).

SSNMR offers unique capabilities that are well suited

for investigating the structures of nanocrystals, macromo-

lecular complexes, fibular and precipitated membrane

proteins. Unlike in solution NMR, size is not a fundamental

limitation because magic-angle spinning eliminates aniso-

tropic interactions and dipolar couplings; however, the

practical data collection and interpretation challenges are

significant obstacles to solving de novo structures of high

molecular weight proteins. Although higher dimensionality

experiments (Ikura et al. 1991; Grzesiek and Bax 1993;

Franks et al. 2007) can enhance resolution, site-resolved

sensitivity scales in inverse linear proportion to molecular

weight, so signal averaging times increase quadratically.

Thus, protein structures determined de novo from SSNMR

data to date have been limited to proteins with a molecular

weight of *18 kDa or less (Bertini et al. 2010; Castellani

et al. 2002; De Angelis et al. 2006; Franks et al. 2008;

Loquet et al. 2008; Manolikas et al. 2008; Marassi and

Opella 2003; Traaseth et al. 2009; Van Melckebeke et al.

2010). It would therefore be desirable to accelerate the

SSNMR structure determination process by improved

leveraging of readily obtainable data from NMR.

Substantial structural information is present in the sim-

plest 2D spectra, which can be acquired for proteins as

large as 144 kDa (Frericks et al. 2006). For example, 13C

chemical shifts provide information on amino acid type and

secondary structure (Spera and Bax 1991). As spectral

overlap accumulates with protein size, limited isotope

labeling strategies are available to assist in simplifying

interpretation of type and pairwise assignments. Multiple

methods have been developed for this purpose, including

cell free expression systems (Baranov et al. 1989; Endo and

Sawasaki 2003; Sawasaki et al. 2002; Schwarz et al. 2008)

and auxotrophic strains that eliminate scrambling from

biosynthetic pathways (Lin et al. 2011; Waugh 1996). With

such labeling approaches, it may be possible to obtain

partial assignments for much larger membrane proteins.

We have recently demonstrated the principle of utilizing

chemical shifts to refine both microcrystalline (Wylie et al.

2009) and membrane protein structures (Tang et al. 2011).

Additionally, such information could be used to screen

initial structures produced by comparative modeling, which

can rapidly generate significant numbers of candidate

structures for target sequences and can also incorporate

data acquired from NMR either to constrain or refine model

generation (Sali and Blundell 1993). Identification of the

most representative model structure from a pool of candi-

dates is a long-standing problem. Several methods have

been developed to assess the quality of comparative models

(Bowie et al. 1991; Fasnacht et al. 2007; Hooft et al. 1996;

Melo and Feytmans 1997; Monleon et al. 2002; Pieper

et al. 2009; Ray et al. 2010; Sippl 1993; Weichenberger

and Sippl 2006), and a subset of structure validation

methods have been developed for X-ray and NMR derived

protein structures (Bowie et al. 1991; Laskowski et al.

1996; Vila et al. 2008). In recent years, new methods have

more effectively leveraged data from SAXS, cryo-EM,

NMR, and other methodologies in the model generation

process (Alber et al. 2008). CS-ROSETTA utilizes NMR

chemical shifts in a very early stage of the fragment

selection process to accelerate model generation, as well as

to score model quality, resulting in atomic resolution

structures for an impressive range of proteins up to 20 kDa

(Shen et al. 2009). Including nuclear Overhauser

effect and/or residual dipolar coupling data set within

CS-ROSETTA has further extended the molecular weight

range and quality of structures derived in this manner

(Raman et al. 2010). Alternative approaches are based
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upon molecular dynamics in concert with chemical shift-

based potential functions (Robustelli et al. 2010) that can

utilize partial assignments of structures to generate a model

that agrees with the site-specific chemical shifts determined

from solution or SSNMR experiments.

All of the methodologies for rapid chemical shift-based

structure determination so far require site-specific assign-

ment information. In contrast, restraint-based structure

prediction via homology modeling generates models by

aligning known structures to a target template, incorpo-

rating known restraints, and then using probability density

functions to relax the structure into a final conformation,

within which chemical shifts are easily interjected to probe

whether the conformations comply with the experimental

data. This works well for proteins that are known to be

homologous and can be aligned accurately ([30%

sequence identity). At lower sequence identity, it becomes

increasingly challenging to identify a template and find a

proper alignment (Marti-Renom et al. 2000). For poor

sequence alignments, NMR restraints that are normally

helpful can exacerbate the error by locking the protein into

an incorrect conformation, thus generating suboptimal

models. This is especially true for proteins well suited for

investigations by SSNMR, namely membrane proteins and

aggregates, due to the reduced number of potential tem-

plates (Oberai et al. 2006). Therefore, a method that mar-

ries comparative modeling with partial chemical shift

assignments promises to accelerate the pace at which the

SSNMR spectroscopist gleans structural information for

non-soluble proteins prior to obtaining complete site-spe-

cific assignments.

With the intent of producing high quality molecular

models from limited experimental NMR data, we present a

comparative model scoring function that has been devel-

oped and evaluated based on the secondary structural ele-

ments reported by chemical shifts. The scoring function

was formulated to incorporate different subsets of NMR

data ranging from secondary structure by amino acid type

to complete site-specific assignments. The inherent flexi-

bility of this model scoring function facilitated the identi-

fication of a minimal subset of NMR data where the score

achieves maximal correlation with the RMSD of molecular

models. To test the scoring function, comparative models

were generated for 22 protein targets culled from the

TALOS?/SPARTA? training set of protein structures

(Shen and Bax 2007; Shen et al. 2009). For each of the

protein targets, chemical shift assignments were simulated

with SHIFTX, a measure assuring that the data required for

Chemical Shift Index (CSI) predictions was complete. As a

control, each model was scored using each target protein’s

actual secondary structure as assigned by STRIDE (Heinig

and Frishman 2004). In this instance, the Pearson correla-

tion coefficient for model score plotted against model-to-

structure RMSD was -0.77 (±0.02), compared with -0.73

(±0.02) if the model and target chemical shifts were pre-

dicted using SHIFTX and the secondary structure obtained

using CSI. We then formulated the scoring function to

incorporate truncated datasets, and noted that the amino

acid labeling scheme using pairs of the Val, Ile, Thr, Ala,

Leu (VITAL) amino acids resulted in a Pearson correlation

coefficient commensurate with the control, -0.75 (±0.02).

We concluded these investigations with a rigorous test of

the model scoring function using actual partial assignments

for the membrane protein DsbB. In this case, the absolute

difference in RMSD between the best scoring model and

best model (DRMSD) was only 0.55 Å, demonstrating the

power of this methodology to identify the best model from

a pool containing 375 models.

Materials and methods

Generation of models

In order to develop and test methods for ranking compar-

ative models based on NMR derived observations, we

generated, for twenty-two protein templates, a total of

7,525 homology models based on the sequences of known

crystal structures for which publically available, high

quality NMR data exists. Twenty-two model targets were

culled from the TALOS?/SPARTA? training set of pro-

teins (Shen et al. 2009; Shen and Bax 2010), proteins that

were selected to satisfy several criteria: (1) that high

quality NMR chemical shift assignments exist, (2) that high

resolution X-ray crystal structures exist (3) that they

encompass a diversity of protein folds. The target proteins

(Fig. 1) range in size from 137 residues to 502 residues

(14.6–59.3 kDa) and represent a diverse mixture of SCOP

secondary structure classes (a, b, a ? b, a/b). These

measures were taken so that development of the method-

ology does not favor a particular secondary structure class

or protein size (e.g. larger proteins tend to have a dispro-

portionately larger hydrophobic core). Comparative models

were produced using MODELLER (version 9.1) (Sali and

Blundell 1993; Marti-Renom et al. 2000) along with a

published protocol (Eswar et al. 2000) or using MOE

(Kelly 1999) with program defaults (Fig. 2) to generate 25

models per template. To identify suitable modeling tem-

plates, each of the 22 protein sequences was subjected to a

search of the RCSB Protein Data Bank using either the

MODELLER build_profile.py function that employed a

modified BLAST search (BLOSUM62, Altschul et al.

1990) to determine the best alignment or using the modi-

fied FASTA methodology employed by MOE (Pearson

1996).
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The statistical significance of the identified template to

sequence alignments varied considerably as exhibited by

the E-value calculated by MODELLER (Table S3). If

greater than 10 structural templates were available for a

given protein target while discarding templates with low Z-

scores (\5) or high E-values ([1), templates bearing

20–50% sequence identity to the target sequence were

selected at random. Twenty-five models were made for

each structural template selected and subjected to a con-

jugate gradient minimization using either the CHARMM22

force field (MODELLER) or AMBER99 force field

(MOE). Models with an RMSD greater than 45 Å from the

target structure were eliminated from the model pool (51

models, 0.06%) leaving 7,474 total models. The 51 models

exhibiting RMSD greater than 45 Å were artifacts of using

liberal Z-scores and E-values when selecting modeling

templates and possessed residuals greater than 2 standard

deviations removed from the best-fit line in the control

calculation using STRIDE determined secondary structure.

Furthermore, large RMSD values are known to be highly

dependent on protein chain length (Carugo and Pongor

2001) and, although no models were generated with RSMD

between 30 and 45 Å, models with RMSD at *50 Å

scored as well as models with RSMD at *25 Å indicating

that the linear trend may have plateaued at *25 Å. Vari-

ous attributes of the selected structural targets and tem-

plates are depicted in Fig. 1 and listed in Table S3.

Scoring of models and analysis

Each model was scored based on its adherence to the

secondary structure derived from the Chemical Shift Index

(CSI) Software Package (Wishart and Sykes 1994)

calculated for its target structure (Fig. 2). The program

STRIDE (Heinig and Frishman 2004) was used to evaluate

the proportion of the a-helical, b-strand and random coil

secondary structure elements found for each of the models

in addition to those same elements found for the target

structures and served as an alternate pathway to measure

secondary structure of models versus crystal structures.

Coordinates for the 22 target crystal structures were sub-

mitted to SHIFTX (Neal et al. 2003), which predicts the

backbone chemical shifts (C, CA, CB, N, HN, and HA

atoms). The resultant table of predicted resonances was

converted into a simplified secondary structure prediction

(a-helical, b-sheet, or random coil/unknown) based on

three shifts per residue (CA, CB, C). The model secondary

structure, represented as Ai for a-helix and Bi for b-sheet,

and the target secondary structures, Âi and B̂i, were then

passed to the scoring function S for the equations below.

Equation (1) represents a model score, S, based on

amino acid type. S is summed over residue ‘‘type’’

assignments, where aatype represented one of the twenty

amino acids used in the scoring function (i.e., Val, Ile, Thr,

Ala, Leu; i = 1, 2, …, 5) and that Naatype represented the

total number of one residue type and N corresponded to the

total number of assigned residues.

Score ¼ 100
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the 22 target proteins selected

for this investigation. Targets

vary in size from 15.0 to

56.3 kDa, and represent all

SCOP structural classes. PDB

identifiers are indicated along

with BMRB codes (in

parentheses) and molecular

masses
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N ¼
X

aatype

Naatype ð2Þ

Another approach is to score based on pairwise

assignments. Equation (3) represents a model score, S,

based on pairwise assignments where amino acids are

grouped by pairs (i.e., all Ala-Gly pairs or all Gly-Pro

pairs). S is calculated from a summation of the score of

each individual pair of amino acids selected, where

pairstype is the numerical value for one type of amino

acid pair from a limited subset of amino acids (i.e., one

of 25 pairs derived from Val, Ile, Thr, Ala, Leu) that

occurred in the amino acid sequence of the model

structure. In this case, the secondary structure of both

amino acids is treated as a single unit in the following

equation,

Secondary 
Structure From  

Target

Secondary 
Structure From 

Models

Experimental
Chemical Shifts

Target Sequence

BLAST Search

Predicted 
Chemical 

Shifts

Templates

Coarse
Models

Sequence Alignment/
Model Generation

Energy Minimization

ShiftX

CSI

Predicted 
Chemical 

Shifts

ShiftX

CSI

STRIDESTRIDE

Scoring 
Function

RMSD (Å) 
Prediction

CSI

Target Models

Fig. 2 Flowchart depicting the

VITAL NMR modeling and

scoring procedures. Briefly, a

target sequence from one of the

22 selected proteins from the

TALOS?/SPARTA? training

set is submitted to a BLAST

search of the RCSB Protein

Data Bank leading to the

identification of modeling

templates with an E-value

smaller than 0.1. Coarse models

are then produced based upon

the suggested BLAST

alignment with either

MODELLER v9.1 or MOE.

Models are then refined with an

energy minimization in order to

relax side-chains (using the

CHARMM22 force field)

critical for the determination of

secondary structure by SHIFTX/

CSI. The secondary structure of

the models may be interpreted

by the program STRIDE (grey
path) or ascertained by

predicting chemical shifts with

SHIFTX and calculating the

resultant Chemical Shift Index

(CSI). The secondary structure

of the model is then compared

with the secondary structure

determined for the target protein

in one of three ways: (1) when

the model secondary structure is

determined with STRIDE, it is

compared to the STRIDE

interpreted secondary structure

of the target X-ray crystal

structure; (2) when the model

secondary structure is

determined using SHIFTX/CSI

it is compared to the secondary

structure calculated with

SHIFTX/CSI for the target

X-ray crystal structure or (3)

compared with CSI calculated

from chemical shift

assignments, a pathway

highlighted in orange
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Score ¼ 100

�
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P

pairstype Npairstype �
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�

�

� �2
s

N

ð3Þ

where N is the sum of the total number of pairs observed in

the sequence:

N ¼
X

pairstype

Npairstype ð4Þ

Equation (5) represents the model score, S, derived from

site specifically assigned data. S is calculated from a

summation of the score of each site-specific assignment

used, where #aa represents each of the residues in the

target’s amino acid sequence with carbon backbone

chemical shift assignments (CA, CB, C). N corresponds

to the total number of assigned residues in the target

sequence,

Score ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

#aa N#aa �
A#aa�Â#aaj jþ B#aa�B̂#aaj j

2

�

�

�

�

�

�

�

�

� �2
s

N

ð5Þ

where N is the total number of amino acids in the structure.

N ¼
X

aa#

Naa# ð6Þ

Linear regression analyses were used to test the ability

of the model ranking score, S, to predict the model/target

RMSD values. For all Pearson correlation coefficients

calculated (R), the 99% confidence intervals are reported in

parentheses or as error bars. The VMD RMSD plugin was

used to first align each model to its corresponding target

and then calculate the Ca coordinate root-mean-square

difference between the model and the structure (RMSD)

(Humphrey et al. 1996). DRMSD was calculated as the

absolute difference in RMSD for the score-selected best

model and the actual best model as shown in (7).

DRMSD ¼ jRMSDðBest scoring Model; TargetÞ
� RMSDðBest Model; TargetÞj ð7Þ

In instances where several models achieved the same score,

the RMSDs of these models were averaged before calcu-

lating the DRMSD. Tables 1 and S1 give the Pearson

correlation coefficients, standard error of estimate and

DRMSD determined for each implementation of

S described in the ‘‘Results’’ and ‘‘Discussion’’.

The CS-ROSETTA score reported in Shen et al. (2008),

E0 in (8), was calculated for all models generated in this

study.

Table 1 Pearson correlations coefficients (R), standard error of

estimates (SEE), average DRMSDs, and the standard deviation (SD)

of DRMSD for different subsets of the amino acids scored with either

the type (T), pairwise (PW), or site-specific (SS) scoring functions

[(1), (3) and (5), respectively] tested in order to produce a score

predictive of the RMSD between a given model and its true structure

Amino acids scored Score type R (99% conf.) SEE DRMSD (Å) SD of DRMSD (Å)

ALL 20 Control -0.77 (±0.01) 14.0 1.6 3.0

VITLHRMKGS PW -0.75 (±0.02) 13.1 1.9 2.9

VITLHRMKGS SS -0.75 (±0.01) 14.3 1.9 2.6

VILHYGS SS -0.75 (±0.01) 14.6 2.1 2.6

VITALS SS -0.75 (±0.01) 14.9 2.8 4.6

VITALGS SS -0.74 (±0.01) 13.9 2.8 4.2

ALL 20 SS -0.73 (±0.02) 14.5 2.9 4.6

VITALGS PW -0.71 (±0.01) 12.5 1.9 2.7

VITALH PW -0.71 (±0.02) 16.1 2.2 3.1

TAGS SS -0.69 (±0.02) 14.5 2.8 4.5

VILHYGS PW -0.68 (±0.02) 16.1 3.2 4.2

ALHRMKYGS SS -0.58 (±0.02) 22.8 2.2 2.2

VITAL T -0.57 (±0.02) 14.5 3.4 4.8

VITALGS T -0.54 (±0.02) 13.7 2.9 4.6

VITLHRMKGSY T -0.52 (±0.02) 13.8 2.8 4.9

VILHYGS T -0.51 (±0.02) 15.2 3.3 3.5

TAGS T -0.49 (±0.02) 14.0 4.0 5.1

TAGS PW -0.48 (±0.02) 17.0 4.7 5.5

ALL 20 T -0.49 (±0.02) 14.0 5.8 3.5

A comprehensive table may be found in the ‘‘Supplementary Material’’
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E0 ¼ E þ c� v2
CS ð8Þ

The ROSETTA full atom energy, represented as E in (8),

was first calculated using the score_jd2 function in

ROSETTA 3.1. E was then adjusted by v2
CS, (9),

multiplied by a weighting factor c set to 0.25. v2
CS was

calculated as a summation over backbone spins for a given

residue, i, and residues, j as follows:

v2
CS ¼

X

i

X

j
dexp

i;j � dpred
i;j

� �2
�

r2
i;j ð9Þ

where dexp represents either the experimental chemical

shift (BMRB) or the SPARTA? predicted chemical shift

from the crystal structure (SPARTA?), dpred the

SPARTA? predicted chemical shift for the model and r,

the uncertainty in the chemical shift. The SPARTA? csout

option was used to facilitate the calculation of v2
CS. Linear

regressions were then conducted for either the CS-

ROSETTA score versus RMSD or v2
CS as calculated with

experimental or predicted chemical shifts versus RMSD.

Five RMSD windows were selected for this comparison,

and the Pearson correlation coefficients are reported in

Table 2.

Results

To predict the RMSD (Å) of comparative models using

NMR-derived secondary structure, we developed (1), (3)

and (5) and used STRIDE to define the model secondary

structure. As a positive control, we first tested the extent to

which the known secondary structures of various target

structures could be used to select the best molecular models

according to (5). Thus, all 7,474 models were scored based

on their adherence to the secondary structure observed for

each individual amino acid in the target structure. The

scores were then plotted (Fig. 3a) against the model-to-

target RMSDs resulting in a Pearson correlation coefficient

(R) of -0.77 (±0.01), and an average DRMSD of 1.60 Å,

where DRMSD is calculated according to (7) (see ‘‘Mate-

rials and methods’’). This result captures the essential

relationship between secondary structure and RMSD and

Table 2 A comparison of

Pearson correlation coefficients

derived from models scored

with the CS-ROSETTA full

atom energy, v2
CS, VITAL pairs

and all amino acids site-

specifically for 5 different

windows of RMSD

RMSD

window (Å)

# of models in RMSD

window

CS-

ROSETTA
v2

CS

BMRB

v2
CS

SPARTA?

VITAL

pairs

All amino

acids SS

0–2.5 415 0.35 0.27 0.52 -0.14 -0.06

0–5 1,693 0.43 0.21 0.22 -0.31 -0.22

0–10 3,448 0.45 0.44 0.37 -0.33 -0.39

0–15 4,651 0.32 0.22 0.31 -0.52 -0.52

0–20 6,511 0.28 0.30 0.31 -0.66 -0.70
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R=-0.77 ± 0.01
S.E.E. = 14.0

R=-0.73 ± 0.02
S.E.E. = 14.5

Fig. 3 Site-specific scoring of all amino acids using a STRIDE

versus b SHIFTX/CSI methods for determining secondary structure

reveals a similar correlation between model score and RMSD (Å). In

both instances, the model scores are determined by (5) and (6), and

are plotted against RMSD (grey scatter plots). To better visualize

densely populated regions in the scatter plot, each point is binned in a

25 9 25 matrix using nearest neighbors interpolation over the same

range and domain of the scatter plot. Contours are drawn according to

the number of points within a bin ranging from 100 (red) to 10 (dark
blue). Finally, linear regression analyses are performed on each of the

scatter plots, and the resultant linear relationships are plotted

J Biomol NMR (2012) 52:41–56 47

123



represents an upper threshold for agreement between

models and actual structures as measured by secondary

structure within the context of known protein structures.

This analysis was then repeated in order to evaluate the

effect of filtering raw secondary structural information

through an intermediate of predicted NMR chemical shift

information using SHIFTX. We did so by replacing the

actual secondary structure of both the target structures and

the models with the secondary structure determined by pre-

dicting the resonances of the target structures using SHIFTX,

and then deriving the secondary structure from the Chemical

Shift Index (CSI). This serves as an intermediate step to our

final goal, to take experimental chemical shifts directly and

compare the secondary structures derived from these to the

model in order to generate the score. Provided that the

SHIFTX and CSI algorithms are robust, we would expect a

high similarity with the positive control noted above. In this

case, R was reduced minimally to -0.73 (±0.02), while the

standard error of estimate was increased minimally to 14.5

and DRMSD increased to 2.91 Å (Fig. 3b). Aside from the

change in DRMSD, only minute differences exist between

the STRIDE and SHIFTX/CSI formulations of secondary

structure. Therefore, in all subsequent evaluations of S pre-

sented, unless otherwise stated, the target and model sec-

ondary structure were derived from the SHIFTX/CSI

pathway illustrated in Fig. 2.

We next sought to identify the minimal dataset that

optimized correlation according to (1), (3), or (5). All com-

parative models were scored according to (1), the amino acid

type formulation. This facilitated assessment of each amino

acid’s relative value to the overall correlation. Model scores

based on a single amino acid type demonstrated modest-to-

negligible correlation with RMSD where R ranged between

-0.52 (±0.02) (Ala) and -0.10 (±0.03) (Cys). The inherent

assumption motivating our selection of a subset of amino

acid types was that scores based on amino acid types gar-

nering higher correlations would when paired have roughly

additive correlations. Thus, we also scored all combinations

of two amino acids to test the hypothesized additivity of

model scores. The heat map shown in Fig. 4 illustrates a

symmetric matrix of R for the 190 combinations of two

amino acids with the diagonal representing values for the

lone amino acid. By analyzing the individual 20 amino acid

types and all combinations, patterns of primarily score

additivity but also destructive non-additivity were observed,

as visualized in the heat map. Only a few significant

destructive patterns were observed, for instance, when Ser

was paired with Ile the correlation (-0.40± 0.02) was

diminished with respect to Ile in isolation (-0.47 ± 0.02).

From these calculations, pairings that included five particu-

lar amino acids displayed a general additive trend in terms of

their correlations: Val, Ile, Thr, Ala and Leu (VITAL) as

visualized in Fig. 4.

The aliphatic residues VIAL along with T thus became

the focus of our analyses in addition to His, Pro, Gly, Met,

Arg, Lys, Tyr and Ser. The amino acids His, Arg, Lys and

Tyr amino acids were selected due to their inclusion in

several auxotrophic E. coli strains. Ser and Gly were

selected for their ease in assignment and because it was

unclear whether their slight deleterious trend would be

propagated to the site-specific and pairwise scoring

mechanisms. Table 1 lists R, the Standard Estimate Error

(SEE) and DRMSD for the site-specific (SS), type-specific

(T), and pairwise (PW) applications of a select group of the

scoring schemes; others are included in Table S1. To

investigate the impact of subsets of information on these

scoring functions, TAGS, VITAL, VITALGS, and VIT-

LHRMK were compared to ALL 20 site-specific or ALL

20 type-specific (Fig. 5; Table 1); the trend shows that

looking at only well scoring subsets of the amino acids

increases the correlation for type-specific scoring (primar-

ily VITAL), while both the number of amino acids and the

correlations of those amino acids are important for SS or

pairs scoring, with a modest increase in correlation avail-

able upon appropriate selection of amino acids.

The extent to which four of these scoring schemes

sample the secondary structure of Maltose-binding Protein

(MBP) is illustrated for VITAL, VITAL pairs, and VIT-

LHRMK pairs in Fig. 6, a comparison that highlights how

the reduced site-specific/type-specific and pairwise datasets
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Fig. 4 Heat map of Pearson correlation coefficients for structure-to-

model RMSD and model scores derived for the 190 combinations of

amino acid type (off-diagonal elements) and the 20 individual amino

acids (diagonal) using (1) and (2). The aliphatic amino acids A, I, M,

L and V along with T and N have the greatest individual correlation to

RMSD, and as indicated by the bolded font, pairings including the

amino acids A, I, L, T and V (VITAL) have larger correlation

coefficients overall
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uniformly sample the entire structure of MBP. Figure 6

also captures the compromise between fewer sites with

relatively easier to obtain pairwise assignments (Fig. 6c)

versus more sites with more challenging to obtain site-

specific assignments (Fig. 6b) and the subsequent loss of

conformational sampling that results. Using a VITLHRMK

auxotroph in order to limit scattering provides coverage

commensurate to our VITAL scheme (Fig. 6d).

With the above information in mind, the following

scoring schemes were tested, analyzed and listed in

Table 1: (1) Amino acid type scores (1) that relied on the

following combinations of amino acids: ALL 20, TAGS,

VITAGSP, VITAL, VITALGS, VILHY, and VITLHRMK;

(2) pairwise and site-specific scores (3) relying on the

following combinations of amino acids: ALL 20, TAGS,

VITAGSP, VITAL, VITALGS, VILHY, and VITLHRMK;

and (3) site-specific scores (5) relying on the following

combinations of amino acids: ALL 20, TAGS, VITAGSP,

VITAL, VITALGS, VILHY, and VITLHRMK. Additional

combinations included various pairings of the residues

VITALEFGHMQW and are presented in Table S1. Scoring

schemes reliant on amino acid type held only modest-to-

negligible correlation with RMSD that ranged from -0.48

(±0.02) for all amino acid types (Fig. 1b) to -0.57

(±0.02) for VITAL types. Strikingly, using the pairing of

Ile and Ala achieved a correlation equivalent to VITAL

types, -0.58 (±0.02), and using Ala alone fared as well as

using all amino acid types (R = -0.52 ± 0.02). Upon

evaluating (5) using site-specific information for the same

schemes enumerated above, correlations were universally
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Fig. 5 Histograms indicating the change in correlation with respect

to either type-specific (black), pairwise (white), or site-specific (grey)

correlations calculated when presuming 100% complete assignments.

Differences are presented for four of the amino acid subsets tested:

VITAL, VITAL GS, VITL HRMK and TAGS. Error bars denote the

square of the sum of the 99% confidence intervals for the two

correlation coefficients subtracted

Maltose Binding Protein 280-320

• AGST (Easy to Assign)
ENYLLTDEGLEAVNKDKPLGVALKSYEEELAKDPRIAAT

• VITAL (Higher Correlation)
ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAAT

• VITAL PAIRS (A Compromise)
ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAAT

• VITL HRMK (Auxotrophs)
ENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAAT

(A) (B)

(C) (D)

Fig. 6 Pictorial representation of how sampling by various scoring

schemes differs for maltose-binding protein. Subsets of amino acids

may be selected to achieve different aims: (1) AGST residues are in

many cases unambiguously typed and consequently easier to assign

relative to other amino acids, but the Pearson correlation coefficient

observed for the site-specific AGST labeling scheme indicates that it

is less predictive of RMSD than site-specific VITAL assignments. (2)

VITAL site-specific assignments (illustrated in b) are more difficult to

obtain than AGST, but are as predictive of RMSD as complete site-

specific assignments. (3) VITAL pairwise assignments (illustrated in

c) are easier to obtain, but have correlations on par with AGST site-

specific assignments. (4) VITLHRMK pairwise assignments (illus-

trated in d) may be easier to obtain than VITAL pairwise assignments

since an auxotropic E. coli strain exists whereby VITLHRMK

residues may be exclusively isotopically labeled
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improved by an increment of at least -0.18 over their

amino acid type counterpart, with the sole exception of site

specifically labeled Ala, which had a correlation of -0.58

(±0.02). The significantly improved correlations ranged

between -0.70 (±0.02) and -0.75 (±0.01), where VITAL

and VITLHRMK site-specific assignments achieved a

slightly higher correlation than 100% site-specific assign-

ments (Fig. 7a). Although this latter difference is not out-

side of the 99% confidence interval, the site-specific score

correlations are in general well outside of the 99% confi-

dence interval of the correlations for the type-specific

scores.

When using the pairwise scoring function (3), there was

also a general improvement in correlation compared to

type-specific scoring. Relative to site-specific scoring (5),

pairwise scoring suffered a significant decrease in the

number of comparisons between model and structure,

which lead to fewer data points used in the scoring function

and thus poor discrimination of model quality when using

four or fewer amino acids. However, by moving to pair-

wise combinations of five or more amino acids (Fig. 5;

Table 1), enough comparisons were generated to discrim-

inate between models as indicated by a general trend of

lower DRMSDs. This is not surprising since the percentage

of amino acid pairs evaluated for a given 200 residue

model increases from eight for pairs generated from four

amino acid types to twelve for pairs generated from five

amino acid types, assuming a random distribution of amino

acids and that a given amino acid type only has a 1 in 20

probability of appearing in a protein. Weighting for the

likelihood of specific amino acids appearing in a sequence

modifies the result, but not the overall conclusion; each

additional amino acid used in pairwise scoring confers an

exponentially increasing number of sites. Astonishingly,

we find that when using a subset of site specifically

assigned amino acids, each observed to have a high cor-

relation with RMSD (e.g., VITAL), a higher correlation is

observed than for all of the amino acids site specifically

assigned. This observation is supported by previous studies

where motifs derived from pairs of amino acids have been

used in discrimination of extracellular versus intracellular

proteins, illustrating how pairs of amino acids can be used

as a substitute for complete site-specific information

(Nakashima and Nishikawa 1994). This implies that

selection of the amino acids is important to maximize

correlation and that we can obtain somewhat greater cor-

relations by eliminating amino acids that have poor sec-

ondary structure tendencies (and/or complex relationships

between chemical shift and secondary structure, such as

cysteine), and thus poor correlation with RMSD.

In practice, the VITAL pairwise scoring scheme had a

significantly better correlation (-0.71 ± 0.02) than the
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R=-0.73 ± 0.02
S.E.E. = 14.5

R=-0.49 ± 0.02
S.E.E. = 14.0

R=-0.71 ± 0.02
S.E.E. =  16.1

R=-0.75 ± 0.02
S.E.E. =  13.1

Fig. 7 Linear regression

analyses of four scoring

schemes: a ALL 20 site-

specifically scored with (3) and

(4); b all 20 type-specifically

scored with (1) and (2);

c VITAL pairs scored with (5)

and (6); and d VITLHRMK

pairs scored with (5) and (6). In

all instances, the model scores

are plotted against RMSD (grey
scatter plots). To better

visualize densely populated

regions in the scatter plot, each

point is binned in a 25 9 25

matrix using nearest neighbors

interpolation over the same

range and domain of the scatter

plot. Contours are drawn

according to the number of

points within a bin ranging from

100 (red) to 10 (dark blue).

Finally, linear regression

analyses are performed on each

of the scatter plots, and the

resultant linear relationships are

indicated
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TAGS scheme (-0.49 ± 0.02). By increasing the number

of amino acids used in the pairwise scoring function to

seven and eight residues (VITALGS and VITLHRMK

pairs) the scatter as measured by the SEE was significantly

reduced while the correlations increased in magnitude.

Accordingly, VITLHRMK pairwise assignments outscored

all other methods in terms of the correlation (-0.75),

scatter (13.1) and DRMSD (1.9), all values essentially

equivalent to the control calculation. While VITAL pair-

wise assignments (Fig. 7c) had a slightly worse correlation

(-0.71 ± 0.2) and scatter (16.1), the ease of assigning

fewer sites generally outweighs the better correlation and

decreased scatter of VITLHRMK pairwise assign-

ments (Fig. 7d). Furthermore, for membrane proteins, the

VITLHRMK may be of little additional benefit due to the

comparatively smaller number of charged residues found in

the transmembrane segments of this class of proteins and

the general scarcity of His. However, VITLHRMK has an

auxotroph that could allow for easy labeling without

scrambling, as is prevalent with alanine, and could be used

to great effect by simplifying the labeling process. There-

fore, the general robustness of site-specific scores including

three or more residues and pairwise scores including more

than four amino acids, suggests that the score may be tai-

lored to the sequence of the protein of interest, the methods

available, and/or the majority of amino acids assigned.

Fig. 8 illustrates the VITAL pairwise scores plotted against

RMSD for MBP (40.7 kDa, Tables S2, S3). Not surpris-

ingly, the scores appear in clusters around a tight range of

RMSD, and each cluster is associated with a different

template (Fig. 8a). This is due to the comparative models

adopting a structure closely akin to the template. Selecting

the best and worst scoring models in this manner (com-

pared to the structure determined via X-ray crystallogra-

phy) is an additional control. The result supports the idea

that a good template results in not only good alignment, but

also an overall good model compared to a poor scoring

model (Fig. 8b), which in some instances has no overlap

with the structure at all (Fig. 8c). The template for this

particular best model possessed 30% sequence identity to

the target sequence, and thus supports our hypothesis that

VITAL NMR can screen not only for the sequence identity

matches, but more critically the secondary structure mat-

ches, to determine the best templates for future modeling

and structure refinements.

Next, we examined additional amino acids (His, Met,

Phe, Trp, Glu, and Gln) to determine their relative utility.

Glu is a strong a-helical forming residue; combining it with

VITAL provides an optimal blend of keeping the number

of amino acids to a minimum, minimizing DRMSD (2.1 Å

for site-specific, 1.5 Å for pairs, Table S1), and providing

the best correlation of any sixth amino acid used for testing

secondary structure (-0.72); however the minimal increase

in correlation as well as the difficulty in labeling and

assigning Glu renders this an interesting finding and less

practical than other labeling schemes suggested. Addition

of further amino acids minimally increases correlation and

has a negligible effect on DRMSD (Table S1), thus indi-

cating that a small subset is comparable to a larger subset

and that there is little need to further enhance the com-

plexity of analysis and labeling schemes to increase the

scoring function above 7–8 residues.

In order to understand how these global correlations and

DRMSD values correspond to individual targets, the targets

and their templates were analyzed to determine the con-

ditions under which our scoring algorithm works best

(Tables S2, S3). While the optimal correlation had little to

do with number of templates or the sequence identity of the

templates, the DRMSD correlated solely to the number of

templates, implying that scaling up the number of tem-

plates should result in better and more accurate starting

points to finding the true structure. This helps to explain

why in some instances we observed large DRMSD values

for some targets, and thus higher than desired standard

deviations. This also demonstrated that the best use of this
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Fig. 8 VITAL pairwise analysis of maltose-binding protein (MBP:

PDB ID: 1DMB; BMRB: 4354. a A plot of model scores calculated

using VITAL pairwise assignments versus model-to-structure RMSD.

b A superposition of the true structure (blue) with the best scoring

model (red), which had a score of 83.9% and an RMSD to the crystal

structure of 3.0 Å. c A superposition of the true structure (blue) with a

poor scoring model (red), which had a score of 43.0% and an RMSD

of 11.2 Å. Arrows point to the template used to generate the particular

model. The models and structure of MBP were aligned with the VMD

RMSD plugin and were rendered using Chimera. The best overall

model had a score of 77.5% and an RMSD of 1.6 Å
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methodology for protein fold identification is sampling the

entire database of available templates to generate a full

library for each target structure and then using experi-

mental data to determine the most appropriate template for

model generation and subsequent analysis.

We next sought to test whether the CS-ROSETTA full

atom energy selects the best available protein templates and

is correlated to RMSD over a range typically observed for

comparative modeling. Previously, Pearson correlation

coefficients were calculated for the 22 protein targets in one

linear regression. Doing the same for CS-ROSETTA results

in an artificially low correlation of 0.33. For a more fair

comparison to the CS-ROSETTA full atom energy, the tar-

gets were considered separately and averaged, since the

ROSETTA energy is highly target dependent. When aver-

aging the Pearson correlation for each individual template

CS-ROSETTA held a correlation to RMSD of 0.52 ± 0.28,

as opposed to -0.68 ± 0.20 for VITAL pairwise scores and

-0.73 ± 0.21 when assuming 100% site-specific assign-

ments. Unfortunately, due to the relative paucity of com-

parative models between 0 and 5 Å for several of the 22

targets, we were unable to calculate an average Pearson

correlation coefficient for various windows of RMSD for

each individual target. The total Pearson correlation coeffi-

cient for all models within specified RMSD windows are

reported in Table 2, and are consistent with the knowledge

that the ROSETTA full atom energy better distinguishes

models within 5 Å of the correct structure. The score based

on chemical shift differences alone using either BMRB data

or SPARTA? predicted data, v2
CS from (9), performs slightly

worse than the CS-ROSETTA in all RMSD windows

between 2.5 and 15 Å. The difference between the CS-

ROSETTA and v2
CS in the 0 to 20 Å window (0.02) is sta-

tistically insignificant relative to the performance of VITAL

pairs and all amino acid site-specific scoring. Taken together,

the results in Table 2 suggest that the CS-ROSETTA score

complements VITAL PAIRS by its superior ability to select

the best model once models are known to be within 2.5 Å of

the actual structure.

Finally, to establish the utility of the VITAL pairwise

score on a moderately sized membrane protein, we applied

our method to the E. coli disulfide bond-generating protein

DsbB, whose 21 kDa molecular weight is slightly beyond

the current range for which SSNMR can produce de novo

structures. From partial resonance assignments of DsbB

made in previous studies (Li et al. 2007, 2008) and from

recently acquired data (Tang et al. 2011), we calculated the

likely secondary structure using CSI and tested whether our

method could discriminate models based on incomplete

assignments from experimental SSNMR data. With the

VITAL pairwise score, we obtained a DRMSD value of

0.55 Å. The two best scoring models shared the same score

and had an average RMSD of 2.65 Å, while the minimum

RMSD observed was 2.1 Å. These were the only models

that had a score of greater than 80% out of 375 models

generated from 15 templates (Fig. 9). Using VITAGSP

pairs, AGST pairs, VITAL or AGST, we were unable to

discriminate between the best models, supporting that

selection of the VITAL residues or the analogous auxo-

troph VITLHRMK and the pairwise scoring function for

experimental data with incomplete assignments. This pro-

vides a proof-of-concept that our methodology can be

applied to proteins of unknown structure and with incom-

plete backbone assignments.

Discussion

Numerical measures of the agreement between the sec-

ondary structure of a comparative model and that predicted

from its amino acid sequence have been used previously to
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Fig. 9 VITAL pairwise analysis of the E. coli membrane protein

DsbB. a A plot of model scores calculated using VITAL pairwise

assignments versus model-to-structure RMSD for the E. coli disulfide

bond generating membrane protein DsbB (PDB ID: 2ZUQ). b A

superposition of the true structure (blue) with the best scoring model

(red). c A superposition of the true structure (blue) with a poor

scoring model (red). Arrows point to the template used to generate the

particular model. The models and structure of DsbB were aligned

with the VMD RMSD plugin and were rendered using Chimera. The

two best scoring models and also the two best models had scores of

84.9% and RMSDs of 3.2 and 2.0 Å to the crystal structure from

2ZUQ
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rank molecular models (Eramian et al. 2008; Wallner and

Elofsson 2003). Indeed, secondary structure was identified

as the primary component of the composite model score

SVMod, with a relative contribution of *63%, where an

accessible surface score comprised the second largest

contribution of *18% (Eramian et al. 2008). In SVMod,

secondary structure is accounted for in terms of two scores,

PSIPRED% and PSIPRED-weight. In the optimal case, the

model secondary structure is in perfect compliance with the

predicted secondary structure; however, predicted second-

ary structure has at most about *75% accuracy to the true

secondary structure (Frishman and Argos 1997; Rost

1999). While the PSIPRED-weight score resulted in an

impressive average correlation of 0.86 to RMSD, this value

represents an average of Pearson correlations calculated for

each model target of the SVMod training set. A correlation

drawn from the entire training set was not reported, but

should be considerably less than 0.87 as the regression

slopes and intercepts reported for each model target vary

significantly. Furthermore, the SVMod model testing set

(MODPIPE) is more comparable with our model testing set

due to its variability in sequence and alignment length.

SVMod had a significantly diminished average correlation

for the MODPIPE testing set (0.68), and predicted RMSDs

of *5 Å for nearly all models between 5 and 20 Å RMSD.

Thus, using secondary structure as a means to validate

models is not unprecedented, and the increased accuracy of

SSNMR secondary structure observations translates into

higher overall correlations with RMSD and a score better

predictive of RMSD, even when a limited subset of amino

acids are evaluated.

While an enhanced predictive power of secondary

structure based model scoring is an important finding, from

a practical standpoint, it is imperative to discover partial

assignments or type assignments that result in correlations

similar to the case where every amino acid is unambigu-

ously site specifically assigned by investigating the

importance of individual amino acids to the score. When

examining scores based on amino acid type, correlations

are highest for those types that propagate secondary

structure in a cooperative manner. For instance, branched-

chain amino acids (e.g., Val, Ile and Thr among the VITAL

subset) have coupled backbone and sidechain conforma-

tional preferences that propagate along the peptide back-

bone (Engelman et al. 2000; Senes et al. 2004; Swindells

et al. 1995). When one surveys the relative propensities of

amino acids for secondary structure type, one finds that the

amino acids comprising VITAL possess amongst the

strongest propensities for either a-helical (A and L) or b-

strand (I, T, and V) secondary structure (Chou and Fasman

1974). Indeed, the residue most likely to be found in a-

helices, Glu, also provides the best single addition to

VITAL as measured by correlation to RMSD (-0.72,

Table S1). Additional residues beyond VITAL have an

almost negligible benefit to the predictive ability of the

model score according to correlation (-0.71 for VITAL to

-0.75 for VITLHRMK), the DRMSD and SEE are reduced

by *15% by switching from VITAL (SEE = 16.1,

DRMSD = 2.2) to the auxotroph VITLHRMK (SEE =

13.1, DRMSD = 1.9, Table 1). It is promising that the

inherent limit of correlation between secondary structure

and RMSD can be approached using VITAL, a subset of

the amino acids (*25–35% of a given protein sequence);

and surprisingly, leads to a correlation slightly higher than

when all amino acids are site specifically scored using

SHIFTX/CSI. We attribute that this effect is in part due to

the fact that amino acids with ionizable sites and/or aro-

matic rings have more complex chemical shift dependen-

cies on conformation, as well as electrostatic and ring

current phenomena, (e.g., cysteine). It is also likely that

certain amino acids are highly prone to certain conforma-

tions (e.g., proline in random coil) and thus add little

information while other amino acids appear to have a

deleterious effect on correlation (e.g., serine, glycine)

(Fig. 5).

The ability of an amino acid type to report on secondary

structure varies dramatically as illustrated in Fig. 5, and

thus the selection of an amino acid subset to be scored is

important. Here, we conclude that if one can at least assign

pairs of VITAL, one can obtain a reasonable estimate of

the model RMSD from its native structure. This assump-

tion appears to be robust when VITAL pairwise assign-

ments are incomplete, as demonstrated for DsbB. Since

several subsets of amino acids performed within range of

VITAL pairwise assignments (see Tables 1, S1), this

methodology also provides a measure of inherent flexibility

when applied to a particular protein. Accordingly, scoring

schemes can be tailored to the target protein sequence, the

preponderance of assigned residues, regions of structural

and chemical interest, and to certain auxotrophic labeling

patterns. The ability to tune the score promises more suc-

cessful applications of this method, and permits one to

search according to a number of different schemes to

identify the most consistently high-ranking models.

We envision that the primary application of our method

will be to filter out models in poor agreement with avail-

able experimental data. Based on our analyses, the scoring

threshold for selecting the most representative models is

dependent on the type of scoring implemented. Thus, for

site-specific scoring of all amino acids, models scoring

greater than 70% should be compared for structural con-

vergence. The average RMSD for models above 80% was

2.91 ± 4.16 Å and above 85% was 2.1 ± 3.19 Å. The

threshold increases for scoring schemes that incorporate

less experimental data. For instance, when scoring VITAL

pairs of amino acids, a threshold of 90% selects models on
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average within 3.1 ± 2.46 Å of their actual structure and

increased to 1.23 ± 1.5 Å when a threshold of 95% was

used. The relatively high standard deviation is due to the

range of scores that accompany the 25 models from a given

template due to propagation of error of assigning secondary

structure, and thus could be improved even further by using

the average score of each model for a given template.

Additionally, we believe that the VITAL NMR method can

be used synergistically with programs such as CS-

ROSETTA and CHESHIRE, which improve upon the

structure generation process when complete chemical shift

assignments are available. This will help to eliminate the

obvious deficiency of our score to discern when a protein

adopts an improper conformation but retains the correct

secondary structure. By focusing on the most representa-

tive models, computationally expensive energetic analyses

can be utilized more productively, and molecular dynamics

and/or simulated annealing-based structure refinement

seeded with improved initial conditions. In principle,

higher-quality model structures may be generated than

produced via homology modeling alone, because templates

and alignments can be iterated based on the predicted

RMSD while none of the currently available model quality

assessment scores possess an absolute relationship with

RMSD, as demonstrated here. Instead, correlations are

reported on a case-by-case basis because the model scores

can only order models in a relative sense.

Conclusions

We have demonstrated for the first time that unassigned

and/or incomplete NMR data can be used as a coarse

prediction of RMSD, and that a limited pairwise assign-

ment of the amino acids comprising VITAL is as predictive

of RMSD as all amino acids site specifically assigned. The

correlation between secondary structure, as measured by

SSNMR, and RMSD can be exploited in the determination

of templates for remotely homologous sequences bearing

less than 30% sequence identity. Better templates and

better models can in turn expedite structure elucidation.

Future work includes testing more cases where actual

SSNMR data is available and defining a prescriptive limit

on the usefulness of fewer partial assignments. Work will

also be done to pair the CSI derived secondary structures

with PSI-PRED to more accurately and confidently assign

secondary structure to isolated pairs of amino acids as

opposed to the current method which utilizes all available

assignments to determine secondary structure. Other met-

rics such as solvent accessible surface area will be

explored, but only utilized if they retain the absolute pre-

dictive ability of the current site-specific and pairwise

scoring functions. As we continue to develop our model

score, we envision that our method will be applicable to

experimental SSNMR data from larger proteins, and open

the door to solving the structure of DsbB de novo.
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